Forschende unter der Leitung des Leibniz-Instituts für Astrophysik Potsdam (AIP) und des Institut de Ciéncies del Cosmos an der Universität Barcelona (ICCUB) haben ein neuartiges maschinelles Lernmodell genutzt, um Beobachtungsdaten von 217 Millionen Sternen der Gaia-Mission effizient zu verarbeiten. Die Ergebnisse sind den herkömmlichen Methoden zur Ermittlung von Sternparametern durchaus ebenbürtig. Der neue Ansatz eröffnet spannende Möglichkeiten, Eigenschaften wie die interstellare Extinktion und Metallizität in der gesamten Milchstraße zu kartieren, und so zum Verständnis der Sternpopulationen und der Struktur unserer Galaxie beizutragen.
Quelle: IDW-Informaitionsdienst d. Wissenschaft