Posted in Hintergrundinformationen

John Hagenbeck – Mein Leben im Tropenparadies

Ein Mann des praktischen Lebens und ein Mann der Feder haben sich zusammengetan, um gemeinschaftlich in diesem Buch die Naturwunder und Merkwürdigkeiten der „Perle Indiens“, der Tropeninsel Ceylon, zu schildern.
25 Jahre lang hat John Hagenbeck (1886-1940) dort als Kaufmann, Pflanzer, Sportsmann und Tierexporteur eine umfassende Tätigkeit ausgeübt, ist er der populärste deutsche Kolonist im fernen Südosten gewesen, bis ihn der Ausbruch des Ersten Weltkrieges jäh seinem Wirken entriss, ihn aus seinem Paradies vertrieb.
Was John Hagenbeck in den langen Jahren eines reich bewegten, abenteuerlichen Überseelebens im Verkehr mit weißen und farbigen Menschen, auf der Jagd im Dschungel, in allen Teilen der Tropeninsel erlebt hat, das ist in diesem Werk nach seinen Aufzeichnungen und  Berichten, in literarische Form gebracht worden.
Wenn dieses Buch allen denen, die es aus unserer deutschen Beengtheit wenigstens im Geiste nach fernen Küsten, zu fremdartigen Menschen und seltsamen Dingen lockt, etwas bietet, etwas zu sagen hat, so ist sein schönster Zweck erfüllt!

 

(Mehr in: Hintergrundinformationen)

Posted in Hintergrundinformationen

„Die verlorene Welt“ von Conan Doyle

Der Titel „Die verlorene Welt“ ist der Band 9 in der Buchreihe „Historical Diamond“. Der britische Autor Sir Arthur Ignatius Conan Doyle war Arzt. Seine Praxis in Southsea/Portsmouth ließ ihm aber genügend Zeit noch Romane zu schreiben. Bekannt sind seine Sherlock-Holmes-Geschichten. Neben Kriminalgeschichten schrieb er Abenteuerromane.
In dieser Buchreihe werden die Juwelen bedeutender klassischer Autoren in einer qualitativ hochwertigen, aber preiswerten Buchausgabe in ungekürzter Fassung neu herausgegeben. Das Themenspektrum umfasst spannende Romane, u. a. historische Romane, Krimis, Fiktion, Abenteuer und Entdeckungsreisen.

 

(Mehr in: Hintergrundinformationen)

Posted in Hintergrundinformationen

Was uns eine Meeresschnecke über Evolution und Bewusstsein verrät?

Schlundsackschnecken zu denen Elysia timida gehört, sind hauptsächlich in der Algenzone der Meeresküsten zu finden. Die Schnecken ernähren sich fast ausschließlich von Algen, deren Chloroplasten sie aufnehmen und in ihre Haut oder vergrößerte Mitteldarmdrüse einlagern können (Kleptoplastiden). Elysia timida hat einen Weg gefunden, sich die Photosynthese von Algen nutzbar zu machen. Wie ist das möglich? Als Naturwissenschaftler gehen wir davon aus, dass sich alle komplexen biologischen Systeme durch evolutionäre Prozesse gebildet haben.

Ein Evolutionsprozess besteht aus drei Schritten, die ich kurz charakterisieren möchte: Zuerst entsteht Neues, möglicherweise noch nie Dagewesenes. Im zweiten Schritt wird das Neue mit Vorhandenem kombiniert und zur Auswahl dargeboten. Im dritten und letzten Schritt wird eine Auswahl unter dem Dargebotenen getroffen. Die Auswahl kann passiv durch Wechselwirkungen mit der Umwelt geschehen oder aktiv unter Berücksichtigung der individuellen Neigung, bestimmte Ziele zu verfolgen (= Bedürfnisse).

Das Verdauungsorgan der Schnecke zerkleinert und zerlegt die gefressenen Algen. Neu im Sinn von Schritt 1 der Evolution ist wohl, dass die Schnecke und speziell ihr Darm zwischen verschiedenen Zellbestandteilen der zerlegten Algen unterscheiden kann. Die Schnecke verfügt ganz offensichtlich über die Möglichkeit, selektiv bestimmte Zellbestandteile zu verdauen, oder auch nicht, obwohl sich die einzelnen Bestandteile nicht prinzipiell unterscheiden und andere Meeresschnecken ungeachtet der unterschiedlichen Algenbestandteile die komplette Alge verdauen.

Für den zweiten Schritt des Evolutionsprozesses ergeben sich daraus folgende Kombinationen: a. alle Zellbestandteile verdauen, b. Chloroplasten verdauen, c. alles verdauen außer Chloroplasten.

Im dritten Schritt des Evolutionsprozesses kommt es zu einer Auswahl unter den drei dargebotenen Möglichkeiten. Bei einer passiven Auswahl durch die Umwelt bleibt entweder alles beim Alten (Kombination a) oder das Neue ist im Regelfall von entscheidendem Vorteil für Lebenserhalt und Fortpflanzung. Bei einer aktiven Auswahl können Bedürfnisse die Wahl bestimmen und es kann b oder c zum Tragen kommen.

Die Biologen gehen davon aus, dass die Elysia-Schnecken in Hungerphasen Energie von den Chloroplasten beziehen, die im Darm weiterhin Photosynthese betreiben. Ein Experiment zeigte allerdings, dass die Schnecken auch ohne Photosynthese der Chloroplasten überleben. Nach zwei Monaten im Dunkeln waren die Schnecken so lebendig wie zuvor. Jetzt vermuten die Forscher, die Schnecke profitiert nicht unbedingt sofort von den Chloroplasten, sondern erst dann, wenn die Darmzellen diese in Hungerphasen abbauen.

Für eine passive Auswahl durch die Umwelt im dritten Schritt der Evolution spricht, dass man aus dem Vorhandensein der Chloroplasten im Darm einen geringfügigen Vorteil für den Lebenserhalt ableiten kann. Doch ist dieser Vorteil entscheidend?

Gegen das Wirken eines passiven Prozesses spricht das Erkennen des Unterschieds verschiedener Zellbestandteile der Algen durch die Schnecke selbst bzw. durch ihre Darmzellen. Es gibt also etwas, was sich auf unterschiedliche Anforderungen einstellen kann.

Was die Auswahl im Evolutionsprozess betrifft, so ist die Wahl der Evolution auf Kombination c gefallen, alles wird verdaut außer den Chloroplasten. Allerdings hat die Schnecke anscheinend die Möglichkeit, in Hungerphasen die Kombination b zu wählen, nämlich die Chloroplasten zu verdauen. Es existiert eine nicht determinierte Entscheidungsmöglichkeit zwischen Handlungsalternativen.

Wenn man zudem davon ausgeht, dass die Schnecke das ganz einfache Bedürfnis hat, sich ihr Leben etwas komfortabler zu gestalten, indem sie die Chloroplasten Sauerstoff und Zucker produzieren lässt, dann sind alle Kriterien für den informationsverarbeitenden Prozess erfüllt, den ich in meinen Schriften als Bewusstsein bezeichnet habe.

Der gleiche Bewusstseinsprozess, der Entscheidungen trifft, wann die Chloroplasten Sauerstoff und Zucker produzieren sollen und wann sie zu verdauen sind, hat auch beim dritten Evolutionsschritt die aktive Auswahl durchgeführt.

Sicher handelt es sich nicht um einen hoch entwickelten Bewusstseinsprozess wie das Selbst- oder Oberbewusstsein beim Menschen. Es ist eher ein dem Unterbewusstsein vergleichbarer Prozess. Beim Menschen führt das Unterbewusstsein viele Entscheidungen und körperliche Steuerungen durch. Nur das Wichtigste wird zur Entscheidung dem Oberbewusstsein zugeführt. Und was das Wichtigste ist, das entscheidet ebenfalls das Unterbewusstsein.

Die Elysia-Schnecke zeigt uns mit hoher Wahrscheinlichkeit, dass einfache Bewusstseinsprozesse selbst auf ihrer nicht allzu hohen Entwicklungsstufe wirken.
Mehr unter:

(Mehr in: Hintergrundinformationen)

Posted in Hintergrundinformationen

Physik sorgt für Entwicklungsschub in der Biologie

Geschichte der Biophysik

Physik und Biologie haben gemeinsame Wurzeln und haben sich oft gegenseitig inspiriert. Neue physikalische Messmethoden führten zu einem Entwicklungsschub in der Biologie und Beobachtungen der Biologen dienten als Denkanstöße in der Physik.

Kann die Physik auch prinzipielle Fragen der Biologie klären? Einige Experten hegten einst starke Zweifel. So erklärte der französische Genetiker und Medizin-Nobelpreisträger von 1965, Jacques Monod, lange Zeit, dass Leben zwar mit den Gesetzen der Physik kompatibel sei, aber nicht durch physikalische Gesetze kontrolliert werde. Ernst Walter Mayr, der große Entwicklungsbiologe, behauptete, Physik spiele in der Biologie überhaupt keine Rolle und habe praktisch nichts zur Deutung lebender Materie beigetragen. Die historischen Beispiele zeigen jedoch das Gegenteil.

Mit Physik die Zelle entdecken

Ein erster Begründer der modernen Biologie war der Delfter Kaufmann und Hobbyforscher Antoni van Leeuwenhoek, der um 1670 einfache Mikroskope baute, mit denen er eine bis zu 200-fache Vergrößerung erreichte. Die Mikroskope bestanden aus einer auf einem Kupferring ruhenden Glaskugel, als Beleuchtung diente eine Kerze. Leeuwenhoek beobachtete damit erstmals lebende Zellen – wahrscheinlich sogar große Bakterien.

Historische Skizze des Mikroskops von Robert Hooke.

Mikroskop nach Hooke

Als zweiter Entdecker der Zelle kann der englische Physiker Robert Hooke angesehen werden. Der Experimentator, dessen Name vor allem durch sein Gesetz der Elastizität bekannt ist, beobachttee im 17. Jahrhundert die Struktur von Kork und prägte den Begriff der Zelle. Seine und Leeuwenhoeks Beobachtungen über die Existenz und Bewegung von Zellen wurden von den Biologen lange als Spielerei abgetan und so dauerte es noch gut 200 Jahre, bis die Idee der Zelle vollständig akzeptiert wurde.

Physikalische Prinzipien in der Biologie

Weitere Pioniere der Biophysik waren Thomas Young und Hermann von Helmholtz, die beide über die Medizin zur Physik kamen. Der Augenarzt Thomas Young lieferte Anfang des 19. Jahrhundert mit seinem Beugungsversuch am Doppelspalt den ersten experimentellen Beweis für die Wellennatur des Lichts – gegen den Widerstand des wissenschaftlichen Establishments. In Selbstversuchen lieferte er außerdem den Beweis, dass die Adaption des Auges auf der Verformung der Augenlinse beruht und belegte die Ursache des Astigmatismus, eines optischen Abbildungsfehlers, der sich im Auge als Hornhautverkrümmung äußert. Er stellte auch die Dreifarben-Hypothese des Farbsehens auf, ausgebaut von Helmholtz und heute voll bestätigt. Ebenso wichtig für die Biologie ist Youngs Entdeckung des nach ihm benannten Gesetzes der Kapillarität.

Dargestellt ist die von Helmholtz und Young vermutete Empfindlichkeit des Auges für die drei Farbtöne rot, grün und blau/violett.

Dreifarben-Hypothese

Der Physiologe Helmholtz maß als erster die Transportgeschwindigkeit von Nervensignalen. Seine Formulierung des Energieerhaltungssatzes der Physik und die Entdeckung der zentralen Bedeutung der Zirkulationsströmung für das Fliegen wurden durch die Biologie inspiriert. Dabei ist seine Entwicklung vom Mediziner zum theoretischen Physiker außergewöhnlich: Als Mediziner begründete er die moderne Physiologie und als Physiker legte er den Grundstein für die zum Ende des 19. Jahrhunderts einsetzende enorme Entwicklung der Physik in Deutschland.

Energie und Bewegung

Die prominentesten Beispiele für die Auswirkungen der Biologie auf die Physik sind die Entdeckung des allgemeinen Energieerhaltungsssatzes durch den deutschen Arzt und Physiker Julius von Mayer und den Physiologen Hermann von Helmholtz sowie die Theorie der Brownschen Bewegung durch Albert Einstein. Mayer beobachtete als Schiffsarzt auf Java, dass das in den Venen zum Herzen zurückfließende Blut der Hafenarbeiter in den Tropen heller ist als in gemäßigten Zonen. Er wusste bereits, dass Blut umso heller ist, je mehr Sauerstoff es enthält. Daraus schloss er, dass die Arbeiter in den Tropen bei gleicher Arbeitsleistung weniger Sauerstoff – und damit Energie – verbrauchten als in gemäßigten Zonen, da weniger Wärme an die Umgebung abgegeben wird. Dies brachte ihn auf die Idee, dass Wärme und mechanische Arbeit äquivalente Energieformen sind und er bestimmte aus physiologischen Messungen sogar das mechanische Wärmeäquivalent.

Die Grafik ist zweigeteilt und zeigt statistische Bewegungen von Teilchen, die sich bei höherer Temperatur schneller bewegen.

Brownsche Bewegung

Seine Intuition allein reichte jedoch nicht aus, um der Idee in der Physik zum Durchbruch zu verhelfen. Erst dem Theoretiker Helmholtz gelang 1847 die allgemeine Formulierung des Energieerhaltungssatzes. Seine im Alter von 26 Jahren verfasste Arbeit wurde allerdings nicht zur Publikation in den Annalen für Physik und Chemie angenommen, und so setzte sich der Energieerhaltungssatz eher zögernd durch. Einsteins Deutung der Beobachtung des britischen Botanikers Robert Brown, dass Bärlappsamen in Wasser wirre Bewegungen ausführen, beeinflusste die Physik zu Beginn des Jahrhunderts fast ähnlich stark wie die Plancksche Strahlungsformel. Nach dem experimentellen Beweis der Theorie der Brownschen Bewegung durch den französischen Physiker Jean-Baptiste Perrin, der 1926 den Physik-Nobelpreis erhielt, akzeptierten auch skeptische Physiker das Konzept der atomistischen Struktur der Materie. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

(Mehr in: Hintergrundinformationen)

Posted in Hintergrundinformationen

Warum das Standardmodell der Teilchenphysik nur eine Zwischenlösung ist

Das Problem mit der Feinjustierung

Das Standardmodell ist wohl die umfassendste Theorie, die es jemals gab. Dennoch sehen Teilchenphysiker damit das Ende der Physik noch längst nicht erreicht und suchen eifrig nach neuen Theorien. Dabei motivieren sie nicht etwa irgendwelche inneren Widersprüchen des Modells oder experimentelle Zwänge, sondern allein die Ästhetik.

Ein Physikprofessor soll Max Planck am Ende des 19. Jahrhunderts dazu geraten haben, nicht Physik zu studieren. Schließlich sei dort, abgesehen von wenigen Lücken, bereits alles erforscht. Heute hätte wohl kein Hochschullehrer mehr solche Bedenken. Dieses vorherrschende Gefühl lässt sich allerdings nur teilweise fachlich begründen. Es ist vor allem mit Problemen der Wissenschafts- und Erkenntnistheorie verbunden.

Viele Galaxien vor schwarzem Hintergrund. In der Mitte befindet sich ein hantelfömiger, rosa Klumpen, an dessen beiden Seiten ein blauer Klumpen angrenzt.
Indirekter Nachweis von Dunkler Materie

Obwohl das Standardmodell der Teilchenphysik gegenwärtig wohl die umfassendste Theorie darstellt, kann es einige Phänomene vom Prinzip her nicht beschreiben. Allem voran steht hier die Gravitation. Zudem gibt das Standardmodell keine Antwort auf die Frage nach Dunkler Materie oder Dunkler Energie, auf die astrophysikalische und kosmische Beobachtungen hinweisen. Deshalb sehen die meisten Teilchenphysiker das Standardmodell nur als eine Stufe auf dem Weg zu einer noch umfassenderen und in gewissem Sinne „einfacheren“ oder „schöneren“ Theorie – Begriffe und Ziele, die mehr philosophisch motiviert sind, als aus immanenten Problemen der Wissenschaft zu folgen.

Das Standardmodell wird demnach oft nur als sogenannte effektive Theorie verstanden, die im Bereich niedriger Energien als Grenzfall einer weitreichenderen Theorie fungiert. Dieses Verhalten kennt man bereits aus anderen Teilgebieten der Physik, wie beispielsweise der klassischen Mechanik: Alle physikalischen Phänomene bei Geschwindigkeiten und Abständen des Alltagslebens – also deutlich langsamer als Licht und deutlich größer als ein Atom – werden durch diese Theorie völlig adäquat beschrieben. Heute versteht man die klassische Mechanik aber als Grenzfall der Relativitätstheorie beziehungsweise der Quantenmechanik.

Vom Standardmodell wissen wir nur, dass es bei Abständen von mindestens einem Milliardstel des Atomdurchmessers gilt. Genauer können die heutigen Beschleuniger nicht auflösen. Für Elementarteilchen wird die Gravitation aber erst bei Abständen relevant, die noch etwa eine billiardemal kleiner sind. Die Sensitivität von Teilchenbeschleunigern wird wohl nie auch nur in die Nähe dieser sogenannten Plancklänge vordringen. Alerdings legt die Struktur des Standardmodells nahe, dass man bereits bei deutlich größeren Abständen Hinweise auf eine übergeordnete Theorie finden sollte.

Keine einfache Theorie

Zwar beruht das Standardmodell im Wesentlichen auf wenigen Prinzipien – vor allem der Eichsymmetrie –, aber dennoch sind 27 Parameter notwendig, die nicht a priori durch die Theorie festgelegte Werte besitzen und durch Messungen bestimmt werden müssen. Diese Zahl erscheint einerseits zu groß, um von einer „schönen“ und „einfachen“ Theorie zu sprechen. Andererseits zeigen einige der Parameter gewisse Regelmäßigkeiten oder Hierarchien, die alles andere als zufällig wirken, deren Ursachen man aber derzeit nicht kennt.

Ein Beispiel: Es existieren zwölf Materieteilchen, die sich in drei fast identische Familien einordnen lassen. Warum existieren diese Wiederholungen? Hauptsächlich unterscheiden sich die Familien durch die Massen der zugehörigen Teilchen. Das Topquark ist beispielsweise mehr als eine Trillion Mal schwerer als das leichteste Neutrino. Welche Ursache hat dieses gewaltige Massenspektrum? Der Higgs-Mechanismus „erzeugt“ zwar Massen, leistet für diese Strukturen aber keinerlei Erklärungen.

Für jedes Elementarteilchen gibt es ein Schildchen, auf dem dessen Masse sowie Nachweisjahr notiert sind. Angeordnet sind die Schildchen in einem Diagramm, in dem Masse und Nachweisjahr gegeneinander aufgetragen sind.
Massenspektrum der Elementarteilchen

Diese und noch andere Eigenschaften des Standardmodells weisen darauf hin, dass es eine neue, umfassendere Theorie geben sollte. Die Suche nach dieser neuen Theorie beruht weitgehend auf Prinzipien wie Einfachheit, Schönheit oder Natürlichkeit. Einer der wichtigsten Ansatzpunkte ist hier natürlich der Higgs-Mechanismus. Von vielen Physikern wird dieser nur als Hilfskonstruktion gesehen, der unter Umständen auf einen tiefer liegenden Mechanismus hindeutet. Denn auch hier finden sich noch einige Schönheitsfehler.

Laut der Theorie wäre das Higgs-Boson das einzige fundamentale Teilchen ohne Eigendrehimpuls. Was erst einmal wie eine kleine Randnotiz aussieht, erweist sich als gravierendes theoretisches Problem. Aus der Wechselwirkung mit den allgegenwärtigen quantenmechanischen Fluktuationen des Vakuums – hier entstehen und verschwinden laufend kurzlebige Teilchen-Antiteilchen-Paare – erhält jedes Teilchen einen Beitrag zu seiner Masse. Die Differenz zwischen dieser „Strahlungsmasse“ und der im Experiment beobachteten physikalischen Masse des Teilchens ergibt die „nackte Masse“. Letztere beschreibt also die Masse, die das Teilchen hypothetisch hätte, wenn es keine Vakuumfluktuationen gäbe.

Unter bestimmten Annahmen lässt sich die Strahlungsmasse für jedes Teilchen berechnen. Bei Teilchen mit einem Spin größer als Null, wie etwa Elektronen und Quarks, fällt die Strahlungsmasse klein aus. Die nackte Masse entspricht damit ungefähr der physikalischen Masse. Anders beim Higgs-Teilchen: Hier hängt die Strahlungsmasse vom Quadrat der höchsten Energie ab, an der das Standardmodell noch Gültigkeit besitzt. Sollte das Standardmodell tatsächlich bis zu Abständen von der Größenordnung der Plancklänge gelten, wäre die Strahlungsmasse hundert Billionen Mal größer als die physikalische Masse des neu entdeckten Teilchens von etwa 125 Gigaelektronenvolt. Es sieht also so aus, als ob die nackte Masse und die Strahlungsmasse fast exakt entgegengesetzt gleich groß wären und sich über viele Größenordnungen kompensieren.

Von neuen Symmetrien und Unteilchen

Formal stellt dies zwar kein Problem dar, aber eine solche enorme Feinjustierung schreit förmlich nach einer Erklärung. Schließlich handelt es sich bei nackter und Strahlungsmasse um zwei völlig verschiedene Dinge. Warum sollten sie also über dreißig Größenordnungen denselben Zahlenwert aufweisen? Eine Lösung dieses Feinjustierungsproblems könnte sein, dass das Standardmodell bereits bei relativ niedrigen Energien – beziehungsweise großen Abständen – durch eine übergeordnete Theorie ersetzt wird. In den meisten Fällen resultieren solche Theorien in neuen Teilchen, die dann am LHC entdeckt werden könnten.

Abgebildet ist eine alte Waage mit zwei Waagschalen. Die nackte Masse als Kugel auf der einen, die Strahlungsmasse als Tetraeder auf der anderen Seite. Der Zeiger der Waage steht genau auf 125 Gigaelektronenvolt.
Nackte Masse und Strahlungsmasse

Die neuen Theorien sind also weder durch irgendwelche inneren Widersprüche des Standardmodells noch durch experimentelle Zwänge motiviert, sondern allein durch Ästhetik. Das Feinjustierungsproblem war in den vergangenen Jahrzehnten wohl die wichtigste Triebfeder beim sogenannten Model Building – der Suche nach Modellen jenseits des Standardmodells. Oft entstehen dabei geniale, revolutionäre, mitunter vielleicht sogar abstruse Ideen, die neue Symmetrien, zusätzliche Raumdimensionen oder völlig neuartige Objekte wie beispielsweise „Unteilchen“ postulieren, und natürlich alle möglichen Kombinationen davon. Die Entdeckung des neuen Teilchens am LHC und das gleichzeitige Fehlen von Signalen anderer neuer Teilchen bedeutet für viele dieser Ideen allerdings das abrupte und definitive Ende.

Physiker und Philosophen stellen sich gleichermaßen die Frage, ob das schwer quantifizierbare Problem der Feinjustierung (Wie viel Feinjustierung ist erlaubt?) wirklich das Kriterium für neuartige Theorien sein kann, oder ob es sich dabei nur scheinbar um ein Problem handelt. Auch diese Frage verschärft sich vor dem Hintergrund der bisherigen Ergebnisse des LHC.

Bislang gibt es keinen Hinweis darauf, dass eine der vorgeschlagenen neuen Theorien verwirklicht ist. Viele Theorien, die das Feinjustierungsproblem lösen oder umgehen wollen, führen zu Ergebnissen, die im Widerspruch zu Messungen stehen. Dies bewirkt eine hohen Dynamik bei der Entwicklung von Modellen, die oft auf sehr eleganten Ideen beruhen, dann aber sehr unattraktiven Modifikationen unterworfen werden müssen, um im Einklang mit den Messungen zu bleiben. Theorien werden zwar selten verworfen, aber oft irgendwann nur noch von einigen hartgesottenen Anhängern verfolgt.

Sollte das Feinjustierungsproblem allerdings real sein, dürfte es in einem Energiebereich gelöst werden, in den der LHC in den nächsten fünf bis sechs Jahren vordringen soll. Dann lassen sich auch Teilchen aufspüren, die bis zu zehnmal schwerer sind als das im Juni 2012 entdeckte Boson. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

(Mehr in: Hintergrundinformationen)

Posted in Hintergrundinformationen

Komponenten des Lebens und ihre Funktion

Die Biophysik bildet die Brücke zwischen der Physik und den Lebenswissenschaften. Sie ist eng mit der Physik Weicher Materie und Komplexer Systeme verknüpft und viele Fragestellungen sind Bestandteil der Statistischen Physik geworden. Dabei verfolgt die Biophysik mehrere Stoßrichtungen.

Die eine versucht, Methoden zu entwickeln, um die Architektur biologischer Materialien von molekularen bis makroskopischen Skalen zu untersuchen und ihre physikalischen Eigenschaften unter möglichst natürlichen Bedingungen zu messen – in „vivo“, sagt der Biologe. Entdeckungsfreudige Physiker finden eine breite Spielwiese, um mit einfachen Methoden wie optischen und magnetischen Pinzetten oder einer Glaspipette, gepaart mit einem guten Mikroskop, die physikalischen Eigenschaften der Zellen zu studieren.

Dreidimensionale Darstellung der Struktur des Proteins GGA1.

Struktur eines Proteins

Große Maschinen hingegen sind notwendig, um die Struktur und Dynamik biologischer Materialien mittels Neutronen- und Röntgenbeugung zu erforschen. Moderne Methoden der Röntgenbeugung mit fokussierten Strahlen eröffnen dabei auch völlig neue Einblicke in die molekulare Architektur von Gewebe, Knochen oder Holz. Zudem verspricht die Entwicklung der Spallations-Neutronenquellen und des Freien Elektronenlasers neue Einsichten in die molekulare Basis des molekularen Erkennens zwischen Proteinen und DNS oder die physikalischen Grundlagen der Proteinfaltung.

Biologie als Vorbild

Eine zweite Forschungsrichtung ist die von der Biologie inspirierte Physik. Sie versucht möglichst realistische Modelle lebender Materie – wie Membranen, Gewebe oder Knochen – aufzubauen, um spezifische biologische Prozesse zu imitieren. Solche Modelle spielen eine wichtige Rolle, um etwa die Verlässlichkeit neuer physikalischer Methoden zu testen oder um nach den wesentlichen physikalischen Parametern zu suchen, welche das biologische Verhalten eines Systems bestimmen.

Parallele Untersuchungen natürlicher Systeme und von Modellen helfen auch, Bezüge zur Physik Kondensierter Materie herzustellen. Im Hintergrund steht der Gedanke, die Strategie der biologischen Selbstorganisation zur Herstellung neuartiger smarter Materialien einzusetzen. Beispiele dieses Bionik genannten Gebietes sind Materialien, die ihre Eigenschaften an wechselnde Umgebungsbedingungen anpassen können, wie selbst reinigende Oberflächen oder bruchfeste Keramiken, wie sie in Prozessen der Biomineralisierung entstehen.

Im Grenzbereich zwischen Physik und Technik sind Bemühungen angesiedelt, Methoden der Navigation in der Tierwelt zu imitieren. Beispielsweise inspirierte die Echoortung der Fledermaus die Radartechniker zum Bau des Zirp-Radars. Auch beim Bau von Robotern lässt man sich gern von der Biologie inspirieren: Zahlreiche Arbeitsgruppen versuchen, die Fähigkeit der Insekten und Salamander des Hochlaufens an Wänden zu imitieren. Roboter zum Fensterputzen wären eine passende Umsetzung des Prinzips.

Ein anderer zukunftsträchtiger Zweig der angewandten Biologischen Physik ist der Bau von Biosensoren durch den Aufbau von Enzymsystemen, Biomembranen oder Nervenzellen auf elektro-optischen Bauelementen. Ein Beispiel sind zweidimensionale Anordnungen von Punkt-Transistoren, die als Nano-Voltmeter fungieren. Hier sitzen auch zahlreiche Querverbindungen zur Nanotechnik oder Mikrooptik, denn die dort entwickelten Methoden eröffnen neue Möglichkeiten zur Messung physikalischer Eigenschaften der Zellen in natürlicher Umgebung.

Komplexe Wechselwirkungen erfassen

Dargestellt ist eine Nervenzelle mit Axonen.

Neuron

Auf fundamentalere Fragen der Biologie zielt die oft als Systembiophysik bezeichnete Erforschung der Regulation biologischer Prozesse durch das Wechselspiel zwischen biochemischen und genetischen Signalkaskaden, der dadurch bedingten Modifikation der Materialeigenschaften und der biologischen Funktion. Hier arbeiten Physiker, Mathematiker und Ingenieure miteinander. Eine besonders faszinierende Fragestellung dieser Kategorie ist die Entwicklung vom befruchteten Ei zum Embryo, oft Morphogenese genannt. Was steuert die Differenzierung der zunächst völlig identisch erscheinenden Zellen des befruchteten Eis in Neuronen oder Muskelzellen und was legt den Zeitplan der embryonalen Entwicklung fest? Ist dies alles im genetischen Code vorbestimmt oder bestimmt die Kopplung zwischen externen äußeren Kräften – wie chemischen Potentialen oder mechanischen Kräften – und dem genetischen Apparat den Prozess der Morphogenese?

Alan Turing, der geistige Vater des Programmierens, lehrte erstmals, wie raum-zeitliche Muster, etwa von Signalmolekülen, die dann die Entwicklung von Organen steuern, allein durch das Zusammenspiel chemischer Potenziale und autokatalytischer Prozesse entstehen können. Zwar ist die Entwicklung vom befruchteten Ei zum ausgewachsenen Lebewesen vor allem durch die zeitliche Folge der Gen-Expression bestimmt, doch zeigt sich auch immer mehr, dass die Zell-Zell-Erkennung und insbesondere mechanische Kräfte die Differenzierung und räumliche Organisation der Zellen steuern können. Die Aufklärung des Wechselspiels zwischen Morphogenese und der Physik der Zelle ist eine besonders reizvolle Aufgabe für Experimentatoren und Theoretiker.

Immer mehr Physiker finden außerdem Interesse an der Hirnforschung und versuchen zu verstehen, wie das Gehirn die Umwelt wahrnimmt. Ein Meilenstein auf dem Weg zur quantitativen Hirnforschung war die Entdeckung, dass optische Muster, die auf die Netzhaut der Augen projiziert werden, im visuellen Cortex als Erregungsmuster abgebildet werden. Diese Experimente brachten der Physik neuronaler Netzwerke einen enormen Aufschwung. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)

Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

(Mehr in: Hintergrundinformationen)